Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), x)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(if, app2(app2(eq, w), y))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(eq, w)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), z)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(lt, w)
APP2(app2(lt, app2(s, x)), app2(s, y)) -> APP2(lt, x)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(lt, w), y)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(if, app2(app2(lt, w), y))
APP2(app2(lt, app2(s, x)), app2(s, y)) -> APP2(app2(lt, x), y)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(if, app2(app2(eq, w), y)), true)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(eq, w), y)
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), x)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(if, app2(app2(eq, w), y))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(eq, w)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), z)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(lt, w)
APP2(app2(lt, app2(s, x)), app2(s, y)) -> APP2(lt, x)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(lt, w), y)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z))
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(if, app2(app2(lt, w), y))
APP2(app2(lt, app2(s, x)), app2(s, y)) -> APP2(app2(lt, x), y)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(if, app2(app2(eq, w), y)), true)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(eq, w), y)
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 11 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(lt, app2(s, x)), app2(s, y)) -> APP2(app2(lt, x), y)
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(lt, app2(s, x)), app2(s, y)) -> APP2(app2(lt, x), y)
Used argument filtering: APP2(x1, x2) = x2
app2(x1, x2) = app1(x2)
s = s
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), x)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), z)
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), x)
APP2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> APP2(app2(member, w), z)
Used argument filtering: APP2(x1, x2) = x2
app2(x1, x2) = app2(x1, x2)
fork = fork
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(app2(lt, app2(s, x)), app2(s, y)) -> app2(app2(lt, x), y)
app2(app2(lt, 0), app2(s, y)) -> true
app2(app2(lt, y), 0) -> false
app2(app2(eq, x), x) -> true
app2(app2(eq, app2(s, x)), 0) -> false
app2(app2(eq, 0), app2(s, x)) -> false
app2(app2(member, w), null) -> false
app2(app2(member, w), app2(app2(app2(fork, x), y), z)) -> app2(app2(app2(if, app2(app2(lt, w), y)), app2(app2(member, w), x)), app2(app2(app2(if, app2(app2(eq, w), y)), true), app2(app2(member, w), z)))
The set Q consists of the following terms:
app2(app2(lt, app2(s, x0)), app2(s, x1))
app2(app2(lt, 0), app2(s, x0))
app2(app2(lt, x0), 0)
app2(app2(eq, x0), x0)
app2(app2(eq, app2(s, x0)), 0)
app2(app2(eq, 0), app2(s, x0))
app2(app2(member, x0), null)
app2(app2(member, x0), app2(app2(app2(fork, x1), x2), x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.